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Abstract
We investigate the two-dimensional Aharonov–Bohm operator Hc0,β =
(−i∇ − A)2 − βδ(· − �), where � is a smooth loop and A is the vector
potential which corresponds to the Aharonov–Bohm potential. The asymptotics
of negative eigenvalues of Hc0,β for β −→ +∞ is found. We also prove that
for large enough positive value of β the system exhibits persistent currents.

PACS numbers: 02.30.Tb, 03.65.Ge

1. Introduction

In the presence of a static magnetic field, a single isolated normal-metal loop is predicted
to carry an equilibrium current [1], which is periodic in the magnetic flux � threading the
loop. This current arises due to the boundary conditions [2] imposed by the doubly connected
nature of the loop. As a consequence of these boundary conditions, the free energy E and the
thermodynamic current I (�) = ∂E

∂�
are periodic in �, with a fundamental period �0 = h̄/e.

In recent papers [3, 4] Exner and Yoshitomi have derived an asymptotic formula showing that
if the δ-coupling is strong or in a homogeneous magnetic field B perpendicular to the plane,
the negative eigenvalues approach those of the ideal model in which the geometry of � is taken
into account by means of an effective curvature-induced potential. The purpose of this paper
is to ask a similar question in a situation when the electron is subject to a Bohm–Aharonov
potential. We are going to derive an analogous asymptotic formula where the presence of
the magnetic field is taken into account via the boundary conditions specifying the domain of
the comparison operator as in [4]. As a consequence of this result, we prove that the system
exhibits persistent currents.
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2. The model and the results

In this section, we study the Aharonov–Bohm operator in L2(R2) with an attractive δ-
interaction applied to a loop. We use the gauge field A = c0

( −y

x2+y2 ; x
x2+y2

)
. Let

� : [0, L] � s �→ (�1(s), �2(s)) ∈ R
2 be the closed counter-clockwise C4 Jordan curve

which is parametrized by its arc length. Given β > 0 and c0 ∈ ]0, 1[, we define the quadratic
form

qc0,β(f ; f )=
∥∥∥∥
(

−i∂x +
c0y

x2 + y2

)
f

∥∥∥∥
2

L2(R2)

+

∥∥∥∥
(

−i∂y − c0x

x2 + y2

)
f

∥∥∥∥
2

L2(R2)

− β

∫
�

|f (x)|2 ds

with the domain H 1(R2), where ∂x ≡ ∂
∂x

, and the norm refers to L2(R2).

Let us denote by Hc0,β the self-adjoint operator associated with the form qc0,β( , ):

Hc0,β = (−i∇ − A)2 − βδ(. − �).

Our main goal is to study, as in [4], the asymptotic behaviour of the negative eigenvalues of
Hc0,β as β −→ +∞.

Let γ : R −→ R be the signed curvature of � , i.e.

γ (s) := (�′′
1�′

2 − �′′
2�′

1)(s).

Next we need a comparison operator on the curve

Sc0 = − d2

ds2
− 1

4
γ (s)2 in L2((0;L)) (2.1)

with the domain

Pc0 = {u ∈ H 2(]0;L[); u(k)(L) = u(k)(0); k = 1, 2}. (2.2)

For j ∈ N, we denote by µj (c0) the j th eigenvalue of the operator Sc0 counted with multiplicity.
This allows us to formulate our main result and the proof follows using the same method as
in [4]:

Theorem 2.1. Let n be an arbitrary integer and I be a non-empty compact subset of ]0, 1[.
Then there exists β(n, I ) such that #

{
σd

(
Hc0,β

) ∩ ] −∞, 0[
}

� n for β � β(n, I ) and c0 ∈ I.

For β � β(n, I ) and c0 ∈ I we denote by λn(c0, β) the nth eigenvalue of Hc0,β counted
with multiplicity.

Then λn(c0, β) admits an asymptotic expansion of the form λn(c0, β) = − 1
4β2 + µn(c0) +

O(β−1 ln β) as β → +∞; where the error term is uniform with respect to c0 ∈ I.

The existence of persistent currents is given as a consequence of the following result.

Corollary 2.1. Let n ∈ N. Then there exists a constant β1(n, I ) > 0 such that the function
λn(·, β) is not constant for β > β1(n, I ).

Since the spectral properties of Hc0,β are clearly invariant with respect to Euclidean
transformation of the plane, we may assume without any loss of generality that the curve �

parametrizes in the following way:

�1(s) = �1(0) +
∫ s

0
cos H(t) dt �2(s) = �2(0) +

∫ s

0
sin H(t) dt

where H(t) ≡ −∫ t

0 γ (u) du. Let 	a be the map

	a : [0, L) × (−a, a) � (s, u) �→ (�1(s) − u�′
2(s), �2(s) + u�′

1(s)) ∈ R
2.
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From [3] we know that there exists a1 > 0 such that the map 	a is injective for all
a ∈ (0, a1]. We thus fix a ∈ (0, a1) and denote by 
a the strip of width 2a enclosing �


a ≡ 	a([0, L) × (−a, a)).

Then the set R
2/
a consists of two connected components which we denote by ∧in

a and
∧out

a , where the interior one, ∧in
a , is compact. We define a pair of quadratic forms,

q±
c0,a,β(f ; f ) =

∥∥∥∥
(

−i∂x +
c0y

x2 + y2

)
f

∥∥∥∥
2

L2(
a)

+

∥∥∥∥
(

−i∂y − c0x

x2 + y2

)
f

∥∥∥∥
2

L2(
a)

− β

∫
�

|f (x)|2 ds

which are given by the same expression but differ by their domains, the latter in H 1
0 (
a) for

q+
c0,a,β and H 1(
a) for q−

c0,a,β . Furthermore, we introduce the quadratic forms

e±
c0,a

(f ; f ) =
∥∥∥∥
(

−i∂x +
c0y

x2 + y2

)
f

∥∥∥∥
2

L2(∧j
a)

+

∥∥∥∥
(

−i∂y − c0x

x2 + y2

)
f

∥∥∥∥
2

L2(∧j
a)

(2.3)

for j = out, in, with the domains H 1
0

(∧j
a

)
and H 1

(∧j
a

)
corresponding to the ± sign,

respectively. Let L±
c0,a,β , Eout,±

c0,a
and Ein,±

c0,a
be the self-adjoint operators associated with the

forms q±
c0,a,β , eout,±

c0,a
and ein,±

c0,a
, respectively.

As in [3] we are going to use the Dirichlet–Neumann bracketing with additional boundary
conditions at the boundary of 
a . One can easily see this by comparing the form domains of
the involved operators, cf [4] or [5, theorem XIII.2]. We obtain

Ein,−
c0,a

⊕ L−
c0,a,β ⊕ Eout,−

c0,a
� Hc0,a � Ein,+

c0,a
⊕ L+

c0,a,β ⊕ Eout,+
c0,a

(2.4)

with the decomposed estimating operators in L2(R2) = L2
(∧in

a

) ⊕ L2(
a) ⊕ L2
(∧out

a

)
. In

order to assess the negative eigenvalues of Hc0,β , it suffices to consider those of L+
c0,a,β and

L−
c0,a,β , because the other operators involved in (2.4) are positive. Since the loop is smooth,

we can pass inside 
a to the natural curvilinear coordinates. We state

(Uaf )(s, u) = (1 + uγ (s))1/2f (	a(s, u)) for f ∈ L2(
a)

which defines the unitary operator Ua from L2(
a) to L2((0, L) × (−a, a)). To express the
estimating operators in the new variables, we introduce

Q+
a = {ψ ∈ H 1((0, L)×(−a, a));ψ(L, ·)= ψ(0, ·) on (−a, a);ψ(·, a)= ψ(·,−a) on (0, L)}

Q−
a = {ψ ∈ H 1((0, L) × (−a, a));ψ(L, ·) = ψ(0, ·) on (−a, a)}

and define the quadratic forms

b±
c0,a,β [g] =

∫ L

0

∫ a

−a

(1 + uγ (s))−2|∂sg|2 du ds +
∫ L

0

∫ a

−a

|∂ug|2

+
∫ L

0

∫ a

−a

V (s, u)|g|2 ds du − β

∫ L

0
|g(s, 0)|2 ds

− b±
2

∫ L

0

γ (s)

1 + aγ (s)
|g(s, a)|2 ds +

b±
2

∫ L

0

γ (s)

1 − aγ (s)
|g(s,−a)|2 ds

+ c2
0

∫ L

0

∫ a

−a

θ(s, u)|g|2 du ds
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+ 2c0 Im
∫ L

0

∫ a

−a

θ(s, u)(�2 + u�′
1)((1 + uγ )−1 cos Hg∂sg − sin Hg∂ug) du ds

− 2c0 Im
∫ L

0

∫ a

−a

θ(s, u)(�1 − u�′
2)((1 + uγ )−1 sin Hg∂sg + cos Hg∂ug) du ds

(2.5)

on Q±
a respectively, where

V (s, u) = 1
2 (1 + uγ (s))−3uγ (s)′′ − 5

4 (1 + uγ (s))−4u2γ ′(s)2 − 1
4 (1 + uγ (s))−2γ (s)2

θ(s, u) = (�2
1(s) + �2

2(s) + u2 − 2u(�1(s)�
′
2(s) − �2(s)�

′
1(s)))

−1

b+ = 0 and b− = 1.

Let D±
c0,a,β be the self-adjoint operators associated with the forms b±

c0,a,β , respectively.
By analogy with [3], we get the following result.

Lemma 2.1. UaD
±
c0,a,βUa = L±

c0,a,β .

In order to eliminate the coefficients of g∂sg and g∂ug in (2.5) modulo small errors, we employ
the following unitary operator:

(Mc0h)(s, u) = exp[iK(s, u)]h(s, u). (2.6)

Replacing Mc0h in (2.5), it becomes

c±
c0,a,β [g] =

∫ L

0

∫ a

−a

(1 + uγ (s))−2|gs |2 du ds +
∫ L

0

∫ a

−a

|gu|2 du ds

−β

∫ L

0
|g(s, 0)|2 ds − b±

2

∫ L

0

γ (s)

1 + aγ (s)
|g(s, a)|2 ds

+
b±
2

∫ L

0

γ (s)

1 − aγ (s)
|g(s,−a)|2 ds

+
∫ L

0

∫ a

−a

(
θ(s, u)c2

0 + (1 + uγ (s))−2K2
s + K2

u + V (s, u)

+ 2c01(s, u)Ks − 2c02(s, u)Ks

)|g|2 du ds

+ 2 Im
∫ L

0

∫ a

−a

(c01(s, u) + (1 + uγ (s))−2Ks)ggs du ds

− 2 Im
∫ L

0

∫ a

−a

(c02(s, u) − Ku)ggu du ds (2.7)

where

1(s, u) = θ(s, u)(�2 cos H − �1 sin H + u)(1 + uγ )−1 (2.8)

2(s, u) = θ(s, u)(�1 cos H + �2 sin H)(1 + uγ )−1 (2.9)

Ks = ∂sK(s, u)

∂s
Ku = ∂uK(s, u)

∂u
gs = ∂sg(s, u)

∂s
gu = ∂ug(s, u)

∂u
. (2.10)

To eliminate the coefficients of g∂ug in c±
c0,a,β [g], we have the following differential

equation:

∂K(s, u)

∂u

= c02(s, u) (2.11)
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and then, we have

K(s, u) =
∫ u

0
c02(s, v) dv. (2.12)

This form of K reduces (2.7) to

b̃±
c0,a,β [g] =

∫ L

0

∫ a

−a

(1 + uγ (s))−2|gs |2 du ds +
∫ L

0

∫ a

−a

|gu|2 du ds

−β

∫ L

0
|g(s, 0)|2 ds − b±

2

∫ L

0

γ (s)

1 + aγ (s)
|g(s, a)|2 ds

+
b±
2

∫ L

0

γ (s)

1 − aγ (s)
|g(s,−a)|2 ds

+
∫ L

0

∫ a

−a

(
θ(s, u)c2

0 + (1 + uγ (s))−2K2
s + K2

u + V (s, u)

+ 2c01(s, u)Ks − 2c02(s, u)Ks

)|g|2 du ds

+ 2
∫ L

0

∫ a

−a

(c01(s, u) + (1 + uγ (s))−2Ks) Im ggs du ds (2.13)

for g ∈ Q±
a , respectively.

Let us remark that because of the properties of the curve �, we have 2(0, u) =
2(L, u) ∀u ∈ (−a, a). So the domains Q±

a are not changed under the unitary operator
Mc0 .

Let D̃c0,a,β be the self-adjoint operators associated with the forms b̃±
c0,a,β , respectively.

We have the following result:

Lemma 2.2. M∗
c0
D±

c0,a,βMc0 = D̃±
c0,a,β .

In the estimation of the D̃±
c0,a,β , let us use the same notation as in [4]

γ+ = max
[0,L]

|γ (·)| Nc0(a) = max
(s,u)∈[0,L]×[−a,a]

2|c01(s, u) + (1 + uγ (s))−2Ks |
and

Mc0(a) := max
(s,u)∈[0,L]×[−a,a]

∣∣Wc0(s, u) + 1
4γ (s)2

∣∣
where

Wc0(s, u) = θ(s, u)c2
0 + (1 + uγ (s))−2K2

s + K2
u + V (s, u) + 2c0(1(s, u)Ks − 2(s, u)Ks).

(2.14)

Since c0 ∈ I and I is a compact interval, then there exists T such that Nc0(a) + Mc0(a) � T a

for 0 < a < 1
2γ+

and c0 ∈ I , where T is independent of a and c0. For fixed 0 < a < 1
2γ+

, as in
[4] we define

b̂±
c0,a,β [g] =

∫ L

0

∫ a

−a

([
(1 ± uγ+)

−2 ± 1
2Nc0(a)

]|∂sg|2 + |∂ug|2

+
[− 1

4γ (s)2 ± 1
2Nc0(a) ± Mc0(a)

]|g|2) du ds

−β

∫ L

0
|g(s, o)|2 ds − γ+b±

∫ L

0
(|g(s, a)|2 + |g(s,−a)|2) ds (2.15)

for g ∈ Q±
a , respectively. Since |Im(g∂sg)| � 1

2 (|g|2 + |∂sg|2), we obtain

b̃+
c0,a,β [g] � b̂+

c0,a,β [g] for g ∈ Q+
a (2.16)
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b̂−
c0,a,β [g] � b̃−

c0,a,β [g] for g ∈ Q−
a . (2.17)

Let Ĥ±
c0,a,β be the self-adjoint operators associated with the form b̂±

c0,a,β , respectively.
Furthermore, let T +

a,β be the self-adjoint operator associated with the form

t+
a,β[f ] =

∫ a

−a

|f ′(u)|2 du − β|f (0)|2 f ∈ H 1
0 (] − a, a[)

and similarly, let T −
a,β be the self-adjoint operator associated with the form

t−a,β [f ] =
∫ a

−a

|f ′(u)|2 du − β|f (0)|2 − γ+
(|f (a)|2 + |f (−a)|2) f ∈ H 1(] − a, a[).

As in [4], let us denote by µ±
j (c0, a) the j th eigenvalue of the following operator, define

on L2(]0, L[), by

U±
a,β = −

[
(1 ∓ uγ+)

−2 ± 1

2
Nc0(a)

]
d2

ds2
− 1

4
γ (s)2 ± 1

2
Nc0(a) ± Mc0(a) (2.18)

in L2((0, L)) with the domain Pc0 specified in the previous section. Then we have

Ĥ±
c0,a,β = U±

c0,a
⊗ 1 + 1 ⊗ T ±

a,β . (2.19)

Let µ±
j (c0, a) be the j th eigenvalue of U±

c0,a
counted with multiplicity. We shall prove the

following estimate as in [4].

Proposition 2.1. Let j ∈ N. Then there exists C(j) > 0 such that∣∣µ+
j (c0, a) − µj(c0)

∣∣ + |µ−
j (c0, a) − µj(c0)| � C(j)a

holds for c0 ∈ I and 0 < a < 1
2γ+

, where C(j) is independent of c0 and a.

Proof. Since

U+
c0,a

−
[
(1 − aγ+)

−2 +
1

2
Nc0(a)

]
Sc0

= 1

4

[
aγ+(2 − aγ+)

(1 − aγ+)2
+

1

2
Nc0(a)

]
γ (s)2 +

1

2
Nc0(a) + Mc0(a)

Nc0(a) + Mc0(a) � T a for 0 < a < 1
2γ+

and c0 ∈ I , we infer that there is a constant C1 > 0
such that ∥∥U+

c0,a
− [

(1 − aγ+)
−2 + 1

2Nc0(a)
]
Sc0

∥∥ � C1a

for 0 < a < 1
2γ+

and c0 ∈ I . This together with the min–max principle implies that∣∣µ+
j (c0, a) − [

(1 − aγ+)
−2 + 1

2Nc0(a)
]
µj(c0)

∣∣ � C1a

for 0 < a < 1
2γ+

and c0 ∈ I . Since µj(·) is continuous, we claim that there exists a constant
C2 > 0, such that∣∣µ+

j (c0, a) − µj(c0)
∣∣ � C2a

for 0 < a < 1
2γ+

and c0 ∈ I . In a similar way, we infer the existence of a constant C3 > 0
such that

|µ−
j (c0, a) − µj(c0)| � C3a

for 0 < a < 1
2γ+

and c0 ∈ I . �

Let us recall the following result from [3].
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Proposition 2.2.

(a) Suppose that βa > 8
3 . Then T +

a,β has only one negative eigenvalue, which we denote by

ζa,β . It satisfies the inequality − 1
4β2 < ζa,β < − 1

4β2 + 2β2 exp
(− 1

2β
)
.

(b) Let β > 8 and β > 8/3γ+. Then T −
a,β has a unique negative eigenvalue ζ−

a,β , and moreover,

we have − 1
4β2 − 2205

16 β2 exp
(− 1

2β
)

< ζ−
a,β < − 1

4β2.

Proof of theorem 2.1. We take a(β) = 6β−1 ln β. Let ξ±
β,j be the j th eigenvalue of T ±

a(β),β ,
by proposition 2.2 we have

ξ±
β,1 = ζ±

a(β),β ξ±
β,2 � 0.

From decompositions (2.19) we infer that
{
ξ±
β,j + µ±

k (B, a(β))
}

j,k∈N
, properly ordered, is the

sequence of the eigenvalues of Ĥ±
c0,a(β),β counted with multiplicity. Proposition 2.1 gives

ξ±
β,j + µk(c0, a(β)) � µ±

1 (c0, a(β)) = µ1(c0) + O(β−1 ln β) (2.20)

for c0 ∈ I, j � 2 and k � 1, where the error term is uniform with respect to c0 ∈ I . For a
fixed j ∈ N, we take

τ±
c0,β,j = ζ±

a(β),β + µ±
j (c0, a(β)).

Combining propositions 2.1 and 2.2 we get

τ±
c0,β,j = − 1

4β2 + µj(c0) + O(β−1 ln β) as β → ∞ (2.21)

where the error term is uniform with respect to c0 ∈ I . Let us fix n ∈ N. Combining (2.20)
with (2.21) we infer that there exists β(n, I ) > 0 such that the inequalities

τ +
c0,β,n < 0 τ +

c0,β,n < ξ+
β,j + µ+

k (c0, a(β)) τ−
c0,β,n < ξ−

β,j + µ−
k (c0, a(β))

hold for c0 ∈ I, β � β(n, I ), j � 2 and k � 1. Hence the j th eigenvalue of Ĥ±
c0,a(β),β counted

with multiplicity is τ±
c0,β,j for c0 ∈ I, j � n, and β � β(n, I ). Let c0 ∈ I and β � β(n, I ).

We denote by κ±
j (c0, β) the j th eigenvalue of L±

c0,a,β . Combining our basic estimate and the
result of [4] with lemmas 2.1 and 2.2, relations (2.16) and (2.17), and the min–max principle,
we arrive at the inequalities

τ−
c0,β,j � κ−

j (c0, β) and κ+
j (c0, β) � τ +

c0,β,j for 1 � j � n (2.22)

so we have κ+
n (c0, β) < 0 < inf σess(Hc0,β). Hence the min–max principle and the result of

[5] imply that Hc0,β has at least n eigenvalues in (−∞, κ+
n (c0, β)]. Given 1 � j � n, we

denote by λj (c0, β) the j th eigenvalue of Hc0,β . It satisfies

κ−
j (c0, β) � λj (c0, β) � κ+

j (c0, β) for 1 � j � n

this together with (2.21) and (2.22) implies that

λj (c0, β) = − 1
4β2 + µj(c0) + O(β−1 ln β) as β → ∞ for 1 � j � n

where the error term is uniform with respect to c0 ∈ I . This completes the proof. �

Proof of corollary 2.1. Theorem 2.1 with [5] (theorem XIII.89) yields the claim. �

3. Remarks

The essential of this paper is the determination of the unitary operator (2.6) which permits us
to have all the conditions of [4], to have our results.



700 G Honnouvo and M N Hounkonnou

Acknowledgments

The authors thank the Abdus Salam ICTP, the Belgian Cooperation CUD-CIUF-UAC/IMSP
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